Bayesian Skew Normal Seemingly Unrelated Regression Modelling of Gross Regional Domestic Product
نویسندگان
چکیده
منابع مشابه
Bayesian Geoadditive Seemingly Unrelated Regression
Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...
متن کاملBayesian Geoadditive Seemingly Unrelated Regression 1
Parametric seemingly unrelated regression (SUR) models are a common tool for multivariate regression analysis when error variables are reasonably correlated, so that separate univariate analysis may result in inefficient estimates of covariate effects. A weakness of parametric models is that they require strong assumptions on the functional form of possibly nonlinear effects of metrical covaria...
متن کاملBayesian modelling of multivariate quantitative traits using seemingly unrelated regressions.
We investigate a Bayesian approach to modelling the statistical association between markers at multiple loci and multivariate quantitative traits. In particular, we describe the use of Bayesian Seemingly Unrelated Regressions (SUR) whereby genotypes at the different loci are allowed to have non-simultaneous effects on the phenotypes considered with residuals from each regression assumed correla...
متن کاملSparse Seemingly Unrelated Regression Modelling: Applications in Econometrics and Finance
We present a sparse seemingly unrelated regression (SSUR) model to generate substantively relevant structures in the high-dimensional distributions of seemingly unrelated model (SUR) parameters. This SSUR framework includes prior specifications, posterior computations using Markov chain Monte Carlo methods, evaluations of model uncertainty, and model structure searches. Extensions of the SSUR m...
متن کاملBayesian nonparametric sparse seemingly unrelated regression model (SUR)∗
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems. To avoid overparametrization and overfitting issues, we propose a hierarchical Dirichlet process prior for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pakistan Journal of Statistics and Operation Research
سال: 2018
ISSN: 2220-5810,1816-2711
DOI: 10.18187/pjsor.v14i4.2359